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• Since when was the network missing?

• Resource management in HTCondor.

• Network Namespaces in HTCondor.
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networks.

• Expanding the network ecosystem.

• Futures.
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Part I:
Since when was the 
network missing?
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In the beginning...
• The network has never been explicitly managed by the HTC 

layer.

• Instead, it was implicitly assumed to always be there - like 
power.  Like power, if it’s not present, it was considered 
outside the upper layer’s control.

• Within HTCondor, a lot of logic is devoted to retries in case 
the network is unreliable.  However, retries - while valuable - 
are not equivalent to management.

• For quite some time, this has been a reasonable assumption.

• We ran batch systems on clusters and HTC-oriented 
clusters tended to have flat, boring networks.
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But Wait!

• Some of these assumptions have been changing:

• HTCondor is used to manage and schedule resources in 
overlay pools which may have a very heterogeneous 
underlaying network.

• Jobs are increasingly network connected - gone is the day 
where all jobs have a few KB of input, a few KB of output, and 
run for hours.

• We see multi-GB input/output sandboxes, jobs that read in 
multi-GB, and jobs that need access to a firewalled server.

• These are the jobs we run!  Think about the jobs we ignore - 
what if my “job” serves data to others in a pipeline?
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Overlay Pools

Site A - PBS Site B - 
HTCondor

Site C - 
OpenStack

Batch 
Job

Batch 
Job

Batch 
Job

Batch 
Job

Batch 
Job

Batch 
Job VM VM VM

Suppose we have three sites which allocate resources - a 
batch job or a VM - to us.

•An overlay pool is formed when we treat the aggregate 
of our resources as a single batch pool.
•Batch jobs which create the overlay pool are referred to 
as pilots or glideins.
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Overlay Pool

Overlay Pools
Site A - PBS Site B - 

HTCondor
Site C - 

OpenStack
Batch 
Job

Batch 
Job

Batch 
Job

Batch 
Job

Batch 
Job

Batch 
Job VM VM VM

Pool 
Manager

It’s probably reasonable to assume a homogeneous 
network at each site - but no safe assumptions can be 

made between sites!
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So What?
• These deficiencies pop up in various places in our 

HTCondor usage:

• Long transfer wait times.

• Priority inversion due to transfers.

• Scheduler continues to accept matches when 
underwater.

• Or even trying to start jobs requiring 1TB of input at 
a site with a 1Mbps network connection.

• We don’t even consider crossing / tunneling over 
network boundaries!
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And What Now?

• Lark!

• Reactively - Provide network 
performance monitoring data into the 
HTCondor ecosystem, taking it into 
account for scheduling purposes.

• Proactively - Collaborate with & 
manipulate the network to satisfy job 
policies.
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Lark

• NSF-funded (NSF #1245864), 2-year project 
through the CC-NIE program.  We want to 
take the first steps at bridging DHTC and the 
network layer.

• Main focus is integrating HTCondor with 
advanced network technologies.

• Includes hardening/deploying IPv6 support, 
integrating with perfSONAR, DYNES, and 
OpenFlow.  Will touch on all these today.
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Part II:
Resource Management 

in HTCondor
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Anatomy of a 
HTCondor Pool

HTCondor Pool

Central Manager

Collector Negotiator

Submit Node

ScheddUser

Submit Node

ScheddUser

Worker Node

Worker Node

Worker NodeWorker Node

Job Job

Job

Job

Startd Startd

Startd

Startd
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HTCondor Worker 
Nodes

Worker Node

Master

Procd

Job

Job

Job

Startd

Starter

Starter

Starter
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Managing Resources - 
The Art of Making Boxes
• The perfect box:

• Allows nesting - sub-delegate resources.

• Does not require superuser privileges.

• Can’t be escaped.

• Portable across OSs

• Allows full management - creation/
destruction, monitoring, limiting.

http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/
presentations/ThainG_BoxingUsers.pdf
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Resource Management
• Resource management in HTCondor happens in several layers / 

daemons.  All of them need to be made network-aware.

• Collector - database of all known resources and resource 
requests.

• Negotiator - matches available resources and resource 
requests based on policy.

• Schedd - Manages and schedules a queue of jobs; posts the 
resource requests to the collector.

• Startd - Manages the available resources on a worker node.

• Starter - Configures resources and launches the jobs.

• Procd - Monitors and manages processes on the worker node.
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Putting Users in a Box
• The HTCondor project has been increasingly focused on 

resource management on the worker node:

• Accounting: CPU, memory usage, block IO. (Mostly 
via cgroups)

• Isolation: PID namespaces, chroots, per-job /tmp 
directories. (Mostly via namespaces)

• Resource management: CPU fairshare & affinity, 
memory limits, guaranteed process killing.  (Mostly via 
namespaces, cgroups, and obscure syscalls)

• What’s missing?  The network!
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Example - PID 
Namespaces

Worker Node

System PID Namespace

condor_starter
PID 2729

condor_master
PID 2727

init
PID 1

Initial Configuration

The PID namespace is a system resource 
configured by the starter for the job.
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Example - PID 
Namespaces

Worker Node

System Network Namespace

Starter forks a process using the CLONE_NEWPID,
creating a new namespace

condor_starter
PID 2729

condor_master
PID 2727

init
PID 1

Job-Private PID Namespace

condor_starter
PID 2729

clone(…)
CLONE_NEWPID

View from outside
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Example - PID 
Namespaces

Worker Node

System Network Namespace

condor_starter exec's the job process

Job-Private PID Namespace

Job
PID 1

View from inside

The job believes itself to be PID 1 - the namespace 
provides a different view of the system
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Part III:
Network Namespaces
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A network box
• We want to provide a network interface per job and 

force the job to work exclusively with this interface.

• This will allow the job to be directly addressable by 
the network.

• Manage the interface and you manage the job’s 
network.

• In Linux, we can isolate a set of processes to a specific 
set of network interfaces using a network namespace.  
Along with a pair of virtual ethernet pipe devices, we can 
integrate the job to the network.
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Network Namespace - 
A flipbook

Worker Node

System Network Namespace

External Network

Physical Network 
Device

192.168.0.1

Initial Configuration

condor_starter
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Worker Node

System Network Namespace

External Network

Physical Network 
Device

192.168.0.1

Starter creates network pipes

condor_starter

Network Pipe 
Device

Network Pipe 
Device
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Worker Node

System Network Namespace

External Network

Physical Network 
Device

192.168.0.1

Starter creates a helper process
Helper configures IPTables and assigns addresses

condor_starter

Network Pipe 
Device

10.0.0.1
Network Pipe 

Device

IPTables-based
Nat/Routing,
Accounting

Helper script
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Worker Node

System Network Namespace

External Network

Physical Network 
Device

192.168.0.1

Starter forks new process with new network namespace

condor_starter

Job-Private Network 
Namespace

condor_starter

Network Pipe 
Device

10.0.0.1
Network Pipe 

Device

IPTables-based
Nat/Routing,
Accounting
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Worker Node

System Network Namespace

External Network

Job-Private Network Namespace

Physical Network 
Device

192.168.0.1

Network Pipe 
Device

10.0.0.1

Network Pipe 
Device

10.0.0.1

condor_starter

Network Pipe

IPTables-based
NAT/Routing,

Accouning

condor_starter

Parent starter passes one end of network pipe to network namespace,
Child starter configures routing and IP address
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Worker Node

System Network Namespace

External Network

Job-Private Network Namespace

Physical Network 
Device

192.168.0.1

Network Pipe 
Device

10.0.0.1

Network Pipe 
Device

10.0.0.1

User Process

Network Pipe

IPTables-based
NAT/Routing,

Accouning

Network
Calls

condor_starter

Final Configuration
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Capabilities
• The last few slides illustrated configuring a NAT.

• Bridging the job behaves similarly, except we now 
need to figure an appropriate network 
configuration:

• Statically - admin specifies an available range of 
IP addresses HTCondor can use, per node.

• DHCP - Discovery/Offer multicast prior to 
device creation; Request/Ack done post-fork.

• IPv6 - SLAAC.  (Oh please oh please oh please)
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In the end

• At the end of the process, the job has its 
own functional network device, hooked up 
to the network in some way.

• Depending on whether in NAT or bridge 
mode, the job is addressable by the host 
networking subsystem or external network 
devices.

• (And this is where the fun starts)
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Part IV:
Network-aware 

policies
and policy-aware networks
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Now what?

• Once we have a handle to the network, what do 
we want to do with it?

• Accounting - one of our first drivers.  Given a 
job, how much money should I charge for 
network usage?

• Network layer management - Force job 
to keep within its allocated resources. 

• Policy - What actions is the job allowed to 
perform?
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Job Network 
Accounting

• How many bytes did my job read from the network?

• Fairly straightforward to ask from a VM, maddeningly difficult 
for batch systems.

• We take the per-job network device and run all the packets 
through an IPTables chain.

• Lark sets up two no-op rules that match packets in and out, 
respectively.  These get reported to the job accounting for 
HTCondor.

• There are hooks for the sysadmin to add additional rules 
that are read by the accounting.  For example, we can 
separately record on-campus traffic versus off-campus traffic.
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Policies

• There are some simple policies we can 
enforce in NAT-mode:

• No network: the job has no network 
connectivity.

• Host-level bandwidth limits: Hand 
out only certain amounts of host 
bandwidth to each job. 

Wednesday, May 8, 13



Bandwidth Management

• By adding additional iptables rules, we can 
do rudimentary host-level bandwidth 
management.

• We can force the jobs to share the node 
bandwidth equally - or even do per-user 
shares.

• However, in NAT-mode, we are limited to 
the local host’s network.
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Network policies

• What happens if we want to implement a policy 
which requires interacting with larger network?

• For example, what if a specific compute job 
needs access to a file server behind a firewall?

• How about limiting access to a license server 
to a certain set of users?

• We’ll need some help from the network world...
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OpenFlow and SDN
(in a slide or two)

• Routers tend to be divided into the data plane and control plane.

• The data plane is simple - a table of rules on how to handle packets, based on their headers.

• The control plane is complex - various distributed algorithms for setting up the tables in the 
data plane.

• For example, the control plane is in charge of doing shortest path calculations for 
packets across the network.  

• Very hard to do correctly, very expensive, changes very slowly.

• Software defined networking - replace the control plane silicon with a callout to a piece of 
software.  The OpenFlow protocol is a standard for having the data plane managed by an external 
controller (typically a central server).

• By replacing hardware with software and switching from decentralized with centralized, we 
can .

• OpenFlow lives between the switch and the controller and is a open standard.  It’s a 
southbound protocol.

• From the controller to the outside world (management, other software agents) is the 
northbound protocol.  This is not standardized.
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OpenFlow-enabled 
Network

The Stanford Clean Slate Program                    http://cleanslate.stanford.edu
    

Controller 
 

OpenFlow Switch 

Flow 
Table 

Secure 
Channel 

PC 
OpenFlow 

Protocol 

SSL 

hw 

sw 

OpenFlow Switch specification 

OpenFlow Switching 

http://www.openflow.org/documents/OpenFlow.ppt
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Watch as Brian defies 
Murphy’s Law and tries 

a live demo...
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In case the demo doesn’t agree with me...
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Presented at Cisco Live 2013 - idea of incorporating the 
network with the scheduler really resonated there.
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Other policies under 
consideration

• Prioritization and bandwidth limiting - 
having the site border understand the different 
classes of traffic and prioritize / drop accordingly.

• I.e., “prioritize CMS production over CMS 
Xrootd over OSG usage”

• Network Slicing - Isolate different jobs on the 
same network from each other.

• Network flocking - joining a job temporarily 
to a remote network.
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Across the campus,
Across the world

• On the grid, we are seeing jobs increasingly utilizing the network.

• This utilization is largely unmanaged; available network 
connectivity greatly affects the application performance.

• If we cannot get a guaranteed amount of bandwidth, it may not be 
reasonable to run the jobs remotely.

• Once we plug the job into the local network, the local network can 
then make routing decisions about the wider area.

• I2 has a project, DYNES, that provides wide-area circuit 
reservations.  Idea is to use DYNES to guarantee certain amounts 
of bandwidth between UW and UNL.

• “We have the technology,” but we haven’t quite been able to get 
everything to work.  It’ll be a busy summer...
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Part V:
Expanding the 

Ecosystem
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Thinking outside the 
worker node

• The worker node is only one place where 
resources are managed and relevant in 
HTCondor.

• We’d like to give the HTCondor scheduler 
information about the network 
performance.

Wednesday, May 8, 13



What’s up, 
perfSONAR?

• PerfSONAR is an appliance designed to measure 
and record network performance.  Example hosts:

• http://hcc-ps01.unl.edu/ - packet loss 
measurements.

• http://hcc-ps02.unl.edu/ - throughput 
measurements.

• Idea is to place perfSONAR measurement hosts 
in various places of the network.
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Gathering Network 
Data

• perfSONAR has a global set of lookup services for 
discovering these measurement hosts.

• You can then query each service individually for its 
performance data.

• Lark does the work of periodically “spidering” the 
perfSONAR network, then pushes this to the 
HTCondor collector.

• This provides a way to quickly - and centrally - 
analyze the point-to-point connectivity of the grid 
we’re running on.
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Using Network Data

• Now that I can tell you the available bandwidth 
between the submitter (in Nebraska) and the 
worker node (in FNAL), we need to do 
something with it.

• Our first approach - summer 2013 - will be to 
implement circuit breakers.

• If the scheduler can determine there’s no 
available bandwidth to a site, do not match jobs 
which require more than X GB of input data.
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Part VI: Futures
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Job Lifetime
• Right now, all our networking policies apply to the 

job while it’s running.

• There’s two other pieces of the job lifetime relevant 
to networking:

• File stagein,

• File stageout.

• We’re looking at allowing jobs to specify different 
networking configurations for each part of the 
lifetime.
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OpenFlow
• Right now, we integrate with OpenFlow controllers in a simplistic 

manner - we setup a new static rule at the job beginning and 
delete it at the end.

• The network doesn’t really have any knowledge about our 
jobs.  Each worker needs to know, for example, the routes 
needed for the job.

• Next step is to add a HTCondor module to an OpenFlow 
controller.  We’d like to tell the switch what job we’re starting by 
sending it the job description, then having it decide what rules to 
add.

• First step in having the switch providing intelligence back to the 
scheduler.
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OpenVSwitch
• In Linux, bridges are relatively tricky.

• The implementation and API are designed to be configured 
statically.

• We’ve experienced a few headaches in bringing devices onto the 
network for a few seconds, then having them disappear forever.

• Configuration interface is ioctl’s.

• OpenVSwitch is designed from the ground-up for interacting with 
dynamic virtualized devices and OpenFlow.

• We could have the OpenFlow controller even manage the jobs 
on the host level.

• We may swap out Linux bridging with OpenVSwitch in the future.
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DYNES / Circuits
• We’ve had quite a few technical difficulties in automating the 

circuit setup.

• We aren’t giving up on the idea of circuits.

• However, we are looking harder at tunneling / overlaying our own 
network on the existing one.

• More traditional network approach - “smart ends, dumb 
middle” and does not violate layering.

• No longer requires 

• Will allow us to continue to increase the reach of our network 
integration by integrating the job into the overlay network.

• We can circle back later and do bandwidth reservations.
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perfSONAR

• There are several unsolved problems in 
effectively using the perfSONAR data:

• It’s difficult to discern data quality.

• Mapping network locations to grid sites / 
worker nodes is currently done by hand.

• We have several levels of scheduling in our 
grid system - should HTCondor or 
glideinWMS take networking into account?
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Concluding...
• A resource manager can no longer ignore network availability 

and topology, either on the campus or running globally.

• With Lark’s worker node integration, HTCondor can 
manipulate the host and local network at the per-job level.

• This allows us to expose application-level details to the 
network that were never previously available.

• Lark is working to aggregate network performance data into 
the HTCondor ecosystem and exploring ways to use it for 
scheduling.

• These are all the first steps into bringing our distributed high 
throughput computing ecosystem into the network.

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=LarkProject
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